博客
关于我
第五章 数字滤波器的基本结构之四
阅读量:358 次
发布时间:2019-03-04

本文共 735 字,大约阅读时间需要 2 分钟。

数字滤波器的格型结构

数字滤波器作为信号处理领域的重要组成部分,其格型结构设计至今仍然是研究的热点。格型结构的滤波器因其结构简单、性质明确而备受关注。本文将从零点系统和极点系统两个方面,详细探讨数字滤波器的格型结构特点。

格型结构的优点

格型结构的滤波器具有显著的优势,主要体现在以下几个方面:

  • 结构简单:格型滤波器的结构设计直观,易于实现。
  • 频率响应特性:其频率响应特性可以通过滤波器的系数直接观察。
  • 数值稳定性:格型滤波器在数值计算中具有较高的稳定性。
  • 全零点系统(FIR系统)的格型结构

    全零点系统属于数字滤波器的一种,其格型结构具有明显的特点:

  • 对称性强:FIR滤波器的系数通常关于中心对称。
  • 零点系统:滤波器的频率响应在零频率和对称频率处均为零。
  • 典型的FIR滤波器结构如下:

    • 结构特征
      • 滤波器的长度由设计参数决定。
      • 系数对称性是实现滤波器时的关键。

    全极点系统(IIR系统)的格型结构

    全极点系统是一种常见的数字滤波器,其格型结构具有以下特点:

  • 极点分布:滤波器的极点分布在单位圆上。
  • 反射性质:滤波器的设计往往基于反射原理。
  • 全极点滤波器的结构设计通常包括:

    • 低通滤波器:用于抑制低频成分。
    • 高通滤波器:用于抑制高频成分。

    零极点系统(IIR系统)的格型结构

    零极点系统是一种特殊的IIR滤波器,其格型结构具有显著特点:

  • 零点分布:滤波器的零点位于单位圆内。
  • 极点分布:滤波器的极点位于单位圆上或之外。
  • 零极点滤波器的设计通常包括:

    • 低通滤波器:用于保留低频信号。
    • 高通滤波器:用于保留高频信号。

    通过对上述结构的分析,可以清晰地看出数字滤波器的格型结构在不同系统中的独特优势。无论是FIR系统还是IIR系统,其结构设计都体现了在信号处理领域的实际需求。

    转载地址:http://pnfr.baihongyu.com/

    你可能感兴趣的文章
    Node-RED安装图形化节点dashboard实现订阅mqtt主题并在仪表盘中显示温度
    查看>>
    Node-RED怎样导出导入流程为json文件
    查看>>
    Node-RED订阅MQTT主题并调试数据
    查看>>
    Node-RED通过npm安装的方式对应卸载
    查看>>
    node-request模块
    查看>>
    node-static 任意文件读取漏洞复现(CVE-2023-26111)
    查看>>
    Node.js 8 中的 util.promisify的详解
    查看>>
    node.js debug在webstrom工具
    查看>>
    Node.js RESTful API如何使用?
    查看>>
    node.js url模块
    查看>>
    Node.js Web 模块的各种用法和常见场景
    查看>>
    Node.js 之 log4js 完全讲解
    查看>>
    Node.js 函数是什么样的?
    查看>>
    Node.js 函数计算如何突破启动瓶颈,优化启动速度
    查看>>
    Node.js 切近实战(七) 之Excel在线(文件&文件组)
    查看>>
    node.js 初体验
    查看>>
    Node.js 历史
    查看>>
    Node.js 在个推的微服务实践:基于容器的一站式命令行工具链
    查看>>
    Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
    查看>>
    Node.js 异步模式浅析
    查看>>